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IMPACT BUCKLING OF THIN BARS IN THE ELASTIC RANGE
HINGED AT BOTHE ENDS

By Carel Koning and Josef Taub
SUMMARY

Following the development of the well-known differen-
tial equations of the problem and their resolution for
failure in tension, the bending (transverse) oscillations
of an originally not quite straight bvar hinged at both
ends and subjected to a constant longitudinal force (shock
load) are analyzed, To this end the course of the bar form
is expanded in a sinnsoidal series, after which the inves-
tigation is carried through separately for the fundamental
oscillation and tho {n-1)th higher oscillations.

The analysis of the fundamental oscillation dlstin-
gulshes thrce cases: shock load lower, equal to, or higher
than the Bulerisn lpad.

The investigation of the (n-1)th higher oscillation
also distinguishes between shock load smaller, equal to,
or greater than the (n-1)th stability limit, although on-
ly the first case is of practical significance.

Shock loads in buckling are divided into the period
of actual shock and the period of free oscillations follow-
ing the actwal shock,

The investigation leads to functions which are propor-
tional to the maximum stresses in time and space due to
the shock stresses in buczling. Theso functions are then
compared for the case of shock loead lower than ZEulerian
load with the maximum stresscs in static load. It is found

*1Stogsartige Eniclztbeanspruchung schlarker Stgbe im elas-
tischer Bereich bei beiderseits gelenkiger Lagerung.'
Luftfahrtforschung, July &6, 1933, pp. 55-64.
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that the former are smaller for short shock periods and
vice versa; that is, in the extreme case, twice as high as
the latter.

From a comparison of the functions decisive for the
maximum stresses, it appears that the Eulerian load may be
safely exceeded in shock-like buckling stresses, provided
the shock period is sufficiently short; further, that,
wheroas the strosses under shock load above the Eulsr load
show an unrestricted increase with the shock period, the
stresses in shock loads below the ZTuler load rocach an up-
per limit which is not excceded during any shock period.

~ The report closes with an analysis of the lnterdepend-
enco between the shock stross inm buckling and the shock
impulse J P dt. It is found that, contrary to common be-
licf, the stress with oqual shock impulso is sensidbly af-
fected by the shoclk period. TFor that reason the determi-
nation of the stross stipulates not only the time integral
J P dt, ©but also the shock forco and the shock period -
a fact which is of oessential importance from the experi-
mental point of view.

I. INTRODUCTION

The analysis of static buckling stresses affords, as
is known, a probdlem in stability, It poses and answers
the gquestion up to what limit the compression may be in-
creased for given bar dimensions without exceeding the
range within which an uneguivocally definable condition of
oquilibrium exists. Secveral equilibrium conditions are
possiblo after this boundary has beon exceeded, On ap-
proaching thc stability limit the rise of the deformation
is such that the bar usually loses its carrying capacity
before reaching the equilibdrium conditions For this reca-
son, the dectermination of the stability 1imit is of de~
cisive importance,

Contrariwise, stressing a dar suddenly in buckling,
the suddenness being the short-time interval between load
change and loading period, as showa in this report, the
stability 1limit is no longer as significant as in the stat-
ic case, and may be safely exceeded, provided the shock
period is so short as to leave the bar no time to deform
as would correspond to the static equilibrium condition.
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From this it follows that the calculation of the def-
ormations and stresses with respect to time is the primary
issue rather than the determination of the stability lim-
it when analyzing the shock load in bucklinge.

L kg,

D kg,
X==~ P kg,

Y kg,

M kg m,
a4 kg m
q, kg m™ Y
m kg,

r m,

a,

< .,

€ m,

m m,

4 m,
s=/ P at kg s,
E kg m™2
1 m,

i m,

II. NOTATION

force component parallel

force component at right

(¥).
force component parallel
force component at right

bending moment.

to bar axis (X).

angles to bar axis

to axis Xx.

angles to axis X.

outside force at right angles to bar axis

outside force parallel to bar axis.

moment loading of bar elements.

radius of curvature of the elastic line.

slope of the elastic line.

deviation of bar axis from straight line in

unloaded condition.

"amplitude" of bar axis in unloaded econdi-

tion,

deflection., (See fig. 2.

shifting in direction of

)

X.

shock impulse. (See footnote, page 26.)

elasticity modulus.

length of bvar.

radius of gyration of bar section.
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F n2?,
J m%,
0 kg s® m*
Ox kg m 2,
€x,.
v s,
T S,
T s,
P s”1,
v n s,
P,
a,
b,.
c,
As

A,8,C0,D,k; ,kp,
Indices:
n=1,2,3,
0
E,

[ I 1 L ) etc.,

-, =, etc.,

area of har saction.

inertia monent of bar section,
density.

normal stress In =x direction.
elongation in =x direction.
time interval.

period of oscillation of the free funda~
nental oscillation,

shock period.

frequency of oscillation,

velocity of sound inibérvﬁaterial.
phase lag,

ratio of shock load to Eulerian load.

retio of shock period to oscillation period
the free, transversc fundamental oscilla-
n

ratio of the maximum moments (taken abso-
lute) in the statiz and dynamic case.

proper values,

constants.

the natural numerals.

refers to quantities appearing with ten-
sion = 0.

quantities representative of the Fulerian
buckling. load, o

dots over a symfﬁi deﬁofé.its l1st, 24, etc,.,
derivation in timec rato,

daghes over a synbol denocte its 1lst, 24,
etc. derivation with respect to a length

(X)o
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I1I. THE DITFERENTIAL EQUATIONS OF THE SYSTEM

Within the curvilinear system of coordinates X ¥
the equilibrium equations for an element of the bent bar
of length ds are as follows (fig. 1):

(L + %% ds) cos &p- (D + %% ds) sin dp-I+qy ds=0 (1)
(L + %g ds) sin 4o+ (D + %% ds) cos dp-D+qy ds=0 (2)
(M + g% ds) + <L + %% ds> ds sin %? +
+ (D + %g ds) ds cos %? - M - % q; 4s® sin %g +

+ % qq ds® cos %? + mds =0 (3)

With r 4 9 = ds, whereby r = curvature radius,
these egquations, wpon d4¢-—=0 and disregarding the infi-
nitely small quantities of the 2d and 3d order and with

sin 49 ~ 49
cosg 49 ~ 1

reduce to

L .1 =
%; - D+ 9 0 (la)
L1+ L+ gg=0 (2a)
%M + D+ m=0 (3a)
)

The deviations of the bar axis from a straight line
in unstressed condition as well as the deflections in the
processes analyzed hereinafter, are assumed small compared
to the length of the bar, and the choice is a rectangular
gsystem of coordinates =x y such that in first approxima~
tion axis =x coincides with the axis of the bar in un-
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stregsed attitude, Then the reiations between the force
components in the curvilinear system X §J and the force
components in the rectangular system x,y are

L

il

Xcos o+ Y sin o
D=« X sinag+ Y cos ¢

or, since q = sin o = tan a = y!,

Q-_Q = L = f

dx 'y v

84X - cog q =
ds cos a 1

L=3X+7Yy!

As a result:

oL _ gX Y

A AR
ap . _ ax Y _ g ou
ds ~ Ox vt 5 = % v
oM _ 2

os ox °

These terms are written into (1la) to (3a), whereby,
omitting the small quantities of the 24 order, the equi-
- 1ibrium equations for the slightly bent bar become:

Ky dyrrq =0 (1v)
-Eyr ey qy=0 (2b)

il

Mo x gyt + Y+m=0 (3b)

By eliminating Y they reduce to

S, -
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%% - q3 y':+ q, = 0 (4)
@f.ﬁ_xyu_q +.a.3§.—_-0 (5)
ox® d ox

o Assuming zero outside load at the bar element, i.e.,
'q1 and a4 to be mass forces of the bar element and m
the mass moment of the bar element q5 y' are negligibdle
relative to q;, because, first, in sufficiently thin
bars the oscillation frequency and through it the mass ac-
celeration in transverse direction is small relative to
the corresponding quantities in the longitudinal direc-
tion; second, y' 1is a small quantity according to the
premises,

Thus the differential equations read:

g+ q =0 (42)
. X g% - qq + am _ g (5a)
dx2 d ' 9x

Now y 1is the deviation of the bar axis from straight

line in unstressed condition and m is the deflection, so
that y + m must be substituted for y in (5a) (fig. 2).

X and M are expressed in terms of deformation:

?}.
X=0,F=EF ¢ =E5F 5=

Baﬁ
M=XJ =
ox=

and the mass forces q; and g4, end the mass moment m
as '

Lt

4 P E ot2
_ °n
Q=P TR

= - Q. (an),
" ey <ax/



8 ¥.A.3.A., Technical Memorandum No, 748

Kerewith (4a) and (5a) become:.

< 2
4 o° ¢
2 - g 22 = 4b
E ax® P 3t® © (4b)
4 2 &
-
B *‘«1‘:‘;‘- X (a 2+ Q"‘\ + p¥ %{2 - pd é’;z‘%—:'t = 0 (51)

SRR Whese two equations (4b) and (5b) comstltute the dif-
ferentisl é4uations of the buckling stress due to shock
of a bar ‘with constant cross—sectlonal dimensions,.

IV. SOLUTION FOR A BAR HINGED AT EITHER END
1. The Free Longitudinal Oscillations of the Bar
We repeat the well-known formulas for the free longi-
tudinal oscillations of a strailght bar. They are obtained
bty resolving (4b) conformably to the generalized equation:

£ = (A sin Ax + B cos Ax) (k; sin pot + kz ¢co0s DPot)

The bar ig assumed to be clamped or fixed at one end
but left free to move longitudinally at the other. Then
the boundary equations are:

tE =0 for x =0
3t _ x_ _ " -

2 = 0 Dbecause of the first boundary condition, thus
roducing the equation to

£ = sin Ax (k1 sin pot + ka Cbélﬁot)-

Double differentiation according to x and t affords:

a z :—_-:”!f )\2 E
o '

-
a¢ % 2

which, written in (4b) gives
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= v A,

>

., ,
- A E 4+ Po 0 =0 Po =

where Vv =~/ % is the velocity of sound in the material,

Furthermore, because of

o)
5% = AN cos Mx (ki sin p t + ko cos P t),,
together with the second boundary equation we have:

A, = I, 3@, ..., 231
n 21’ 21 21

- Consequently, the frequencies are:
Pon 2"?’ v, 5‘1‘ Vs sacee ‘-é-':L'-' mv
and the period is

=20 -4 b 4
Ton"p —4v’3

2., The Free Transverse Oscillations of the Bar

Disrqgarding the rotatory inertis for the case of
£'= 0, equation (5b) becomes:
EJ -‘f—"ﬂ+pyf— =0 (6)
ox* ot :
The genoralized solution is:
n = % sin (poy & + @,) (Ay sin Ap X + By cos Ap x +
+ Cp sh Ay x4+ Dy ch Ay x).

The insertion of

; EJ
~ 2 /EL
Pon = My pF . (7
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L The boundary conditions for the bar hinged at both
ends read:

~

n = 0|
- }for x=0 and x=1,
£3- o)
0% ;

thus modifying (86) to

n = % Mg = % A, sin (py t + @) sin Ap x (72)
whereby
A, = 0L &0 nm
n .L, .L, 20000 .L

By virtue of (7) the frequencles are:

72 'Ez‘ 4172 §E~ : nenz«/fEJ n v i

Pon = Y ox P r R

where i = radius of inertia of the cross~sectional area,

As a result the oscillation period of the (n-1)th higher
oscillation 1is:
0w 2T 21
°%  pyp n® mW v i

The ratio of oscillation period of the transverse and
longitudinal oscillations for the fundamental harmonic
(n = 1) 4in the bar hinged at both ends to that of the bar
left free to shift longitudinally at one end, 1is:

21° v _ 11

[ T T )

Tv4i4l 2mi’

For slenderness ratlos % > 211 the transverse oscillations

are consequently of lower frequency than the longitudinal
ogclllationss :

7, Transverse Oscillations Due to Constant Shock Load
Here we analyze the specific case of a bar hinged at

both ends being stressed under constant shock load X dur-
ing a shock period T, We ideallize the case by disregarding
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the longitudinal oscillation, i.ec.,, assume the tension
(normal force) to be identical at every point of the Dbar
during the period of shock., With the neglected rotatory
inertia the resolvable partial differential equation is,
according to (5b):

4 2 ' 2 2
am _ . 9m - R - I A
EJ 5%% X 52 + p3 3% X 322 0 (8)

The deviations of the bar axis from a straight line,
iees, the original bar form, are expanded in Fourler se-
ries conformably to the local function sin Anx of (7a):

y = % & sin Ay x = € sin A x4+ € sin 2 M x4+ .00 F

+ € sin n A x + (9)

where A\ = % is the first proper value of the free trans-

verse oscillation (see section IV,2) and €, = constant.
Equation (8) resolves to

T o= % Nep Nxn = Mty Sin A X + myp sin Ay x + ouus +

+ ntn Sin )\h X‘k‘nuuo

it

Nt sin)\x"'ﬂtz Sin2>\.x+ sess F
+ Mgp sin n A x + 4.0,

£(t)

where Nt
ne = ¢(x).
Putting these values of y and m 1in (8) gives
4 4 . 2 2
EJ AN Zn Mgy sinan Ax 4+ XN % n My, sinn A x +
dzfn
+ p FZ —~7§E sin n A x+ XN In® ey sinn A x=0.
n at n

The equation for the fundamental equation is:

d:a
EJ N my, + XN nt1+pF'-£;°—1—+X7\2 a =0 (10)
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and for the (n-1)th higher oscillation:
4 2 d?ﬂ
n* EJ N "ntn+n2 X N miptpF —Eg}ﬁ +n2 X ¥ €,=0 (11)

These equations are Valid during the actual shock pe=
riod. After the shock the bar executes free oscillations
vhose initial conditions are contingent upon the deflec-
tion and rete at the termination of the shock.,

a) The fundamental oscillation

The Zulerilan buckling load for the bar hinged at both
,ends and subjected to stat1c load (see also V) is:

Pp=EJ =17 » (12)

, By donoting the ratio of shoek force to Eulerian load
with a, or in other words, presune

X .
. (13)

X=~-a?fyJ 3  and (10) becomes
d mng o NG 4
pF -2+ BJN (L-almy=acEJA (14)

index 1 being omitted for simplicity.

The resolution of this equation must differentlate
between three cases:

l, X > = PE' thet 18, a < 1
= - " it P
2. X = PE’ s - 8 1

3e X<~PE' " L. a>1"

&) Shock load lower than the Eulerian load*

(a < 1).

e i =

— — — -

*This also. includecs all cases with negative a, that is,
the cases of shock stresses in tension. -
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Putting m, = Ay + ;t in (14), whero %t donotes the

resolution of the homogemesous equatlon and %t the effect

of the disturbing function, the resolution of the homogene-
ous equation

gives Mt = ki sin p &t + kz cos p ¥,

N 4 '’ N M -
because g% AN (1 - a) > 0. Consequently,

p -
dme _ ® A
at®

The insertion of these values in the homogeneous equa-
tion gives the frequency:

ERAVA VORREE NVAE (15)

where p, = frequency of the free fundamental oscillation
(see IV,2),

The effect of the disturbing function on the right-
hand side of (14) is found from

EJN (1-a)fy=acEBJIN

at
Ny = ——%~;-c.
Consequently,
ng = ky sin p t + kp cos p b+ I—%_E € (16)
whence,
Ay = p (ky cos p t - k> sin D t) (17)

Assuming ﬁ£‘= 0 and ﬁt = 0 for the start of the
shock, t =0, (16) and (17) give

8
3 kg = = i—:*; €3 kE, = 0.



14 NeA.C.A. Technical Memorandum No. 748

The solution is:

ng = I_gnn.— € (1 - CO8 P t) 7 (18)

and consequently,

ng = I—_—‘_‘--—; € psinp t (19)

Let T = shock period., Then at the end of the shock:

Ny = T—%—; € (1 - cos pT) (20)
ﬂT = T~%*; €epsinyprT : (21)

The incipient free oscillations following the end of
the shock are, according to (6):

m=mt Nx = C sin (py, t + @) sin A x (22)

with @ = phase shifting. For this pecriod of the processes,
(20) and (21) are the initial equations. Thus,

C sin (py T + @) = I"%—; € (L - cosp T)

C p, cos (po T+ Q) = T—?—g € psinp T.

The addition of the squares of these equations gives:

vl a? e [(1 co ° + P in? 7]
e - - 8 ————
(1 - a) P Poa b
or, with due regard to (15),
C= —2%— ¢ JFZ - 2 cos'EMT - a sin? pT.

1l =~ 2

We use the oscillation period of the free oscillation
T = 20
Do

ags time scale and introduce

T=1b1==2Ly,
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so that p T =27 b /1 - a, and

s s = =
¢ = —2— ¢f2-2 cosfz T bwfl—a) - a sirt (2 m by 1-a).

l -~ a

Our interest centers ébout the maximum bendin 5 monment
which is pr0portiona1 to the maximum curvature (0 n/ax ).
Formula (22) concedes

g«.ﬂ_‘—c}\' Sin (p°t+CP) Sin)\x.
X ,

The curvature is maximum in the center of the bar

(x = %) and amounts to
2 )
maxg—_g-:: ] )\2 = Cg-é-z € T—T—zé'f (a,'b)
- :
1 1
where
f(a,b) = 2-2 cos(2mbd J/1-a)=a sin? (21b J/1-a) (23)

This value 1is decisive for the mazximum moment after
the actual shock period. However, it may happen that a
still greater moment occurs during the actual shock period,
Such is tho casc vhen the shock lasts at lcast long cnough -~
until the highest possible deflection has been reached once.
According to (18), the greatest possible deflection during
the shock occurs once when cos pt = -1, Consequently, 1if

=T T 1
S —-= =
P Po /1~ a
or :
1l 1
b=—1:r—- =

> o p——
PT /1 -a 2/1~-a
the maximum moment is already reached during the shock,

On the other hand, according to (18),

a
= e € (1 - cog t in A x
n = o ( cos p t) s

during the shock, hence
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dn_,_ & _ @ ..
max y-3 = 2 €N =¢ 12 f(a,d),

is apﬁroximately proportional to the maximum moment, whereby

£(a,b) = 2 ——oe. (24)
l - & _
1
To sum up: For shock periods b 5““;“f==. formula (23)
- a
is valid; for shock periods b S _—“f%ZZZQ (24) is the de-
cigsive gquantity for the maximum moment. For ‘b = —Z=——m,

(23) steadily resolves to (24). The latter represents an
absolute maximum value of f(a,b), which may not be ox-
ceedod with any shock period,
B) The shock load equals the Eulorian load (a = 1)
In this case (14) reduces to

®my BT 4

—_—tr o = €,

dt oF
Integrating twice glves:
B 4 2 : o
= == A t 4+ ki1t + ka.-
Nt N € 1 3.
The initial conditions:

My = 0 eand ﬁt =0 for t =20

concede ky =0 and kz = 0, Therefore,
4
ne = gop b€t | (25)

and for the end of the shock,

4 2

= _EJ T
M4 30T A € (28)
and . S 4 . . ’ .
ng = 2L A €T (27)

pF
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The time 1interval after the actual shock is again com-
puted with (22) and the initial conditions for this shock
period are posed in (26) and (27). Thus,

= 2N 2
C sin (p, T + @) = 505 ANoeT

: = EI &
CPOCOS(pg‘T+Cp)—Ef>\. €T

hence, ——

2
oo Bl ¢ A
pF 4 Po

or, when taking

_ 2 EJ ¢ _ 2
T=¢01p and 2L AN =
Po pF P

into consideration,
C=2m1T0Db ¢ vf;E b2 + 1.

Equation (22) again yields

amn _ 2 e
mazx -5;5 =0 N = ¢ '{2— f(asb)’
where
fla,b) =2 m b/ 172 B° + 1 (28)

Contrary to the case of a < 1, equation (25), appli-
cable during the shock, is now aperiodic, hence the deflec~
tion during the shock may not exceed that at the end of the
shockes But the latter is, conformadble to (28), the start
of the free oscillation,

Y) The shock force exceeds the Eulerian load (a > 1)

In this case,
EJ %f
Ef (1 - a) < 0,

and the solution of the homogeneous equation corresponding
to (14), manifests:




18 HNA.C.A. Techiical Memorandum No, -748
Ny = ky, shpt + k; chp ¢,
whence, 2 '
d Ny 2 =
R
which, written in the homogeneous equation, gilves
4
p? = g% A (a = 1) =pg2 (a~1) (29)
Po = frequency of the free fundamental oscillation.
4 - 4
EJN (1 - a) fly =a €EJ A
concedes the particular integral ;t at
= _ e ——E—-— .
'7|t a = 1 €
Consequently,
a
nt = ky sh pt +k; chpt - ~I7 € (30)
Mg = p (ky ch p ¢ + k sh p t) (31)
Assume my = 0 and my = 0 for t = 0, Then (30)
and (31) give
a
Lg = E":""I € and k]_ =0
whence,
= B _ npt-1 32
ng = g2 € (chp ) (32)
Mg = -a'-'%*‘i € p shp ta,
and for the end of tlie shoek +t = T:
My = 77277 ¢ (chpT-~1) (33)
, g = 7 -7¢pshpT S (34)
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. For the free oscillations after the shock (22) and
the initial conditions (33) and (34) are again applicable.
. Then,
a

—2 _ec(echpT~1)
a - 1 _

C sin (pg T + @)

g
—_——— T
a-1 p shp

C po cos (po T + 9)

and, with due allowance for (29)

C = Z—E“T c/2-2chpT+a s pT

or with

pT=2nb>=2nb.a -1,
Po

C = —2_ ¢ J/Z—Z ch(2mb./a~1) + a sh®(2nb / a - 1).

a - 1

Aceording to (22) the maximum curvature 1s again

2

max —a—gr- ¢ X = C?—:—- f(a,d)

g

where

f(a,b) = E%T V/E-z ch(2nbv a~1) +a sh®(2nbs/ a=1) (35)

Since (32), applicable during the shock, is aperiodic
for mt and increases with %, =no greater deflection can
occur during the shock than the maximum deflection reached

b) The (n-1)th higher oscillation

2 }
Substituting X=ea REJAN, equation (11) becomes:

2
a 4 s
pF —Eggﬂ +10° EJ N (n°-a) mgn=0° a EJ XN €5 (36)

Again we differentiate between:
le a<n
2. &a = n®

3e a>n2
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of which the first is of primary interest., Even with the
first higher oscillation (p = 2), cases 2 and 3 refer to
shock loads at least 2% = 4 times as high as the Eulerian
load, Such excesses of the Bulerian load may be disregard-
ed and the analysis confined to a < n®.

The resolution of (36) for a < n? 1s similar to that
of (14) for a < 1, Let the soclution of the homogeneous
ecuation be : )

Mgy = ky sin py t + ky cos py ¢

so that s
d —tn T .
—— - = =

d.tz pn 'ntn

which glves the frequency

Pp = n N V/rii Jn?® - a=n Po1vf;2 - a (37)

Py, = frequency of free fundamental oscillation. (see
section IV,2.)

The effect of the disturbing function follows from
’ = & '
22 £J 2\ (n% - a) Tgnp = 0% a EJ N €

at
= 8
e ———— €
Mtn n° ~ g
whence the solution of (8) at

a

Mign = X1 8in p t + ko cos p t + ;5*:—; €n

k; and kz are again defined from the initial conditions:

Mgg = 0 and m, =0 for t = 0. The result is
a . -
Ntn = ~37~— €n (1 - cos p, t) (38)
n? - a
. a L a

o —

nt = ——e-e— P € sin P t = __p°1 €n sin Pnt
n ng - n n n }ne - a
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For t = T, we have:

a

= ——m—— ¢, (1 ~ cos T) (39)
Mt n® - a ,n Pn
. n a
Nrn = —'—'—';-:—_":'_— Por €n sin pn T (40)
. D~ = a

After the shock the bar executes the (n~1)th fres
higher oscillation, which is governed by

Mn = COp sin (0% pgy t + @) sinn M x (41)

With C and ¢ defined from (39) and (40) as initial con-
ditions:

Cn sin (n2 poy T+ Py) = ——— €5 (1 -~ cos py T)
n - a
W n® - a

gives C at

a a
n n? - g B CoS Pp n2 sin pp

Because of (37) it is
PpnT=2nmbs n® -2

when T = 21 b. Therefore,
01

T -
Cp = —o—— €y A//z—z cos(2nmbs n3-a)~ = sin?(2amb+ n®-a).

n°~a
According to (41) the curvature is

2
9 - - oy w® X stn (5% poy £+ B) sinn )\ x

o/

and the maximum curvaturse,
]

d
max 3;2% = Cp n® N = 77 €n f(n,a,0),
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where f(n,a,d) =

2 - a
= 2.2 J/é—z cos(2amb /0 -a) - "5'oin?(3nﬂb~/;?“a) (42)
n°-a o n

The validity of (42) for the maximum moment is decis-
‘1ve only when it occurs after the shock. If the actual
shock lasts at least long enough to permit once the occur-~
rence of the highest possidple deflection, then the maximum.
moment occurs during the actual shock. This is the case
according to (38) when cos Pp t = -1, that 1s, when the

duration of the shock is

T = I = T _j;*_ﬁ
pn n pOl ’\/;12 -8

or

1

2 na/n® - g

In this case the curvature is

iy

b

2 _
2T F o g @ n? W (1 - cos pp t) sin n A x

according to
a

Np = —5"-'——*" C(l =~ CO08 DPn t) sin n A x
n~ -~ &

and the maximum curvature is

aen 2a
2 3\ _
max -‘—;E 1-1—2-"'-:"'; €n n h - €n —2‘" f(n’a’b) ’
with
2 a n?
f(n,a,d) = —5———- (43)
n® - a

Summed up: for shock periocd

1

b < o
2 na/n® - a

equation (42) is applicable;
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£ér
1

2 nth— a

1R

b

(43) is valid as the gquantity deciding the maximum moment,

C 1

%" When b = = , (42) bvecomes (43). The lat-~
2 nvn® - a

ter represents the maximum value of f(n,a,b), which is

not exceeded in any shock period,
V. NUMERICAL INTERPRETATION AND DEDUCTIONS
The behavior of the bar during shock load is best eval-

~uated by comparing it with its behavior under static load,

The differential equation of the static load is:
an - | (44)
EJ =4 - X = X 44
ax® n ¥
with y gilven from (9). Limited to the first term of (9),
the resolution gives: ) '
m=20, sin M x + C2 cos A x
or m=20C sin A x - (45)
since m =0 when x = 0.

Putting (45) in (44) gives A= T and

€
Cl= % ’

consequently,

n = o (46)

for - X =
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that is, the Eulerian lbad, Nn = o, Thersfore, and with
consideration of (13),

a
= ———— €; 8in A x
= 1o, ¢
whence d®n 72
’ : —g = 5 €
max = 7 G f(a) o ﬂ4?)
.8a .
with f(a) = T f—;

The ratio ¢ of the moments due to shock load and
static load 1is: ' '

c = V[E -2 cbs(znb./i“:"ZT - a sin®(2nb V1 ~ as, (48)

according to (23) aand (47) when a < 1 and the duration of
the shock is ’

and c =2 . (49)
according to (24) and (47) when the shock period is
s L ,

e . g s et o

A

It is readily scen that the ¢ terms are dependent on
the magnitude of the eccentricity ¢, (8ee fig. 3,)

N

b

It will be noted that the ratio ¢ of the dynamic and
static stress for short shock periods 1is smaller, at longer
reriods greater than 1 and its maximum value 2., Horeover,
for equal shock dvrations, ratio ¢ 1s smaller as the
shock load is higher.,

When plotting, as in figure 4, that shock load b
against shoek load a for which the dynamic equals the
static stress, it is seen that comparatively long shocks
are necegsary vicinal to the Fulerian load to raise the dy-
namic stress on a level with the static stress. With a
shock equivalent to 0.97 times (approximatoly) the Buler-
ian load, this shock period equals the natural oscillation
period of the frce bar.
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. . . If thoe form of the bar is such as to exactly produce
- the (n-1)th higher harmonic, by the same argument the nth
- stability limit is

) . -x=m B0

when the bar produces only the fundamental oscillation and
.the decisive function for the maximum moment is

2

£(an) = B8 (50)
n - a

Whenr 7
| | b S e
2 n,/n® - a

the comparison with (42) and (43) gives
c = V/2—2 cos(2nmb+/ n%-a) =

and c =2

2 sin2(2nnb~/;5:;3 (51)

n2

when

o'
iy

1
2
n- - a

2 n

The range of validity of (51) is limited to very short
shock periods, Even for n =2 and a =1, the upper lim-
it of P 1is 0.144 only. Since for very short shock peri-
ods the premises of the calculations are in any case hard-
ly met (reference 1), the ovaluation of (51) may be fore-
gone, especially since the case where exactly only the
(n=-1)th higher oscillation occurs, is practically without
significance,

By contrast, the case where the bar shape is such as
to incur several oscillations concurrently, is much more
important. But obviously this case does not lend itself
to goneral treatment, because the results are substantial-
ly affected by the relative magnitude and the sign of ¢,
in (9)-
7 "The resolution of (44) is applicable only to the cases
for the evaluation of the data of the dynamic investiga~
tion in which the load lies below the stability limit, i.e.,
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for n =1 in the a < 1 range; for n=2 1n the a < 4
range, etc. For loads above the stability limit (44) should
be disregarded in favor of the more exact equation of the
elagtic line, the resolution of which is, however, quite
complicated. For that reason the comparison of the data

is limited to n=1 for a<1l1l, a=1, and a >1l, re-
syectively., The results are illustrated in figure 5, in
logarithmic scale, The functions f(a,b) from (23), (24),
(28), and (35), proportional to the meximum moments are
plotted for divers a against b,

. It is readily seen that the Eulerian load may be ex-
ceeded in buckling stresses due to shock, provided the
shock period itself is short enough. Loreover, the maxi-
mum dynamic stresses are fostered by increasing shock load
a and period b, But, while attaining a limit value for
shock loads below the Eulecrian load (a < 1) for a given
duration of shocl, which cannot be excoeded in any shock
period, they incroaso arbitrarily at shocik loads adove the
Eulerian load.

VI. EFFECT OF SHOCK IMPULSE J F dt ON THE STRESS

Froquontly it is assumed that the stress due to shock
load F is dependent only on the shock impulse [ P dt,
that isg, individually unaffected by the magnitude of the
shock load and the duration.*

The results of the present paper disclose the error
of this assumption, for otherwise only the product a b
would appear as sole variable of the terms for f(a,b).
Agzain, it rmay be asked whether or mot it would be approxi-
mately eorrect., For that reason, we compute the functions
f{a,b) versus b for several values of S = f P dt = ab.

*1t is common practice to designate the time integral

J P dt as "ghock load," whereas the quantity P 1is not
specifically expressed. This practice is probadly due to
the concept that only the time integral J P dt 1is decis-
ive for the shock process, wherecas no speclal importance
attaches to quantity P. But the authors of this paper
have, on the strength of thoir invoestigations, drawn dif-
ferent conclusgions, and beliove it, in fact, to be more
logical to oxpress P, which has the dirension of 'a force,
ag "shock load" and time iantegral [ P 4% with the dimen-
sion of a force times time interval as "sghock impulse,"
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Concentrating on the fundamental oscillation, there
are three ranges of b for a stated value of S = ab:

- 1, range 0 < b< b; for a >1.

2, " b, <b<b, for a<l to the
extent that the maximum stress occurs

3. range by < b when the stress occurs
during the actual shock period.

The values for b, and b, may be defined as fol-
lows:

a =1 for ©b;, consequently, bD; = S;

1
by = ——z=—=—== for Db,,
° 24/ 1 = a
or
b2=%(s +v/ 8% + 1)
because
_ S
a——bgo

For f(a,b):

equation (35) is valid in the range of 0 < b < bi

] ( 2 3) " " " W " n by < b < b2
" (24) 1 . 1 vr i i " n -ba < b
n ( 28 ) 1l 1 1 " n " P =1 1

The value of f(a,b) for b =0 1is obtained by put-

ting a = % in (35) and permitting b to approach zero.
Then,

1im f(a,b)= /§ sh® (2 m fé b - B2) =
=0 Vb

(s = 2b) sh (4n v s v - bz)'z

Js o - v

2 1m S.

=1 S
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With these formulas we computed f(a,b) for § = 0.25%
0.50, 0475, 1,00, and 1,25, as weil as for various b val-
ues., The results are plotted in figure 6. The ordinates
of the 1ladividual curves are noticeadbly not approximately
constant with the parameter S  or, 1n other words, the
stress due to a shock load cannot even be approximately
given in function of the shock impulse., On the contrary,
shock load and shock period must be individually known
if the shock strecss 1s to be dotormincd,

This result is of great importance for shock tests,
Shock load and shock period must be included in such ox-
periments, although this will bo more difficult to accom—
plish than recording the shock impulso,

APPENDIX
Effect of Minor Changes of the Origimnal Bar Shape

on the Results

The premlse of the interpretation of the results was
the selection of the original bar shape such as to precise-
ly insure the occurrence of the fundamental oscillatlion
due to shoel loads In the example hereinafter, we attompt
to show the effect of a minor change in the original shape
of the bar on the resultg., For simplicity the range is re-
strictecd to a <« 1, that is, to the range within which the
ratio ¢ of the dynamic and static stress is readily ob-
tainable,

We assume the shape of the bar such as to develop
aslde from the fundamental oscillation, yet the second
higher oscillation, Then (9) reads:

vy = €; sin % X + €3 sin 3 % P

with T = A,
1
For shock periods,

1

R T sttt ]

241 - 8

the equation
v 2 E

1
20,/0% - & 6/9 - a




N.A.CiA, Technical Memorandum No, 748 29

is particularly applicadle. According to IV,3a and IV,3D
the maximum deflections occur during the shock. The cur-
vature of the elastic line 1s expressed by

2
d Nl = a f & (1 - cos P t) sin A x +
ox™ l-oa
9 €4 v
+ Y (1 - cos pg t) sin 3 A } (52)

The points of the maximum and minimum values of this
‘function result from the resoclution of

Gl N[ =1 t) Aox o+
323 ,a T - cO8 P cos x
4 27 %3 1 t A
_§—_~;‘( - cos p, t) cos 3 X }’ =0 (53)
With
: cos 3Ax=4cos® Ax~ 3 cos A X

(53) resolves to cos A x =0 : (54a)
and

27 ¢ ‘
IAL (1-cos pt) + —5—41 (1-cos pst){(4 cos® AN x-3)=0 (54b)

L

First we consider the maximum for x = 3 of (54a).
Here (52) gives:

a 7 2 €4 g € .
9 €4 <
To the extent that |ea|S l €1,§ hence_ go5 B
€
‘I—f;; ) the 1llmits of the maximum curvature are
2/ €
2a M (72 - 2 Ik Rl PN .Y (56a)
i-a  9~-a 0x° |nax 1-a

-}

vhen €; and €3 have the same sign, and
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. :

: 2 € |l<l}ldm 2 € 9 €3

al’ 2l 215 <2al (3o - 5o 56D

ELE vl Bl W oy Sak s " 8a (5 ).
x=3

when €, and €3 have different signs.

" Comparing these resnlts with the value of the curva-
ture at x = 1/2 1in the static cass

& 2 €y o 93)
a A (l - a 9 - a

£
the ratio ¢ of the dynamic and static stress is found to
lie betwecn

ax

x=%"

€, (9 - a)
< < . 1

2 = = 2

e N Ry e ER FR (572)

when €; and €3 have the same sign, and
€,(9 ~ a) '
2 : —— S ct 2 (571)
€,(9 - a) = 9 ¢3(1 - a) '

when they have a different sign.

This leaves the gquestion, whether or not ‘at some

2
point other than x = L oan upper limit of Q{Q may
: 2 . ,ax max
occur which exceedsg the values given in (57a) and (57b).
-~ Che ) ,"V
Superior limit values of 9—2 may occur at
0x® [max S
points other than x ='% only when x meets equation
(54b). - Let x, be a real root of this equation, Then
' 3 1 9~-48¢€, 1 - cospt

cos® A x, = & - ~L
74 1081 - ac€3 1l - cospyt
hence,
gin 3 N %, = sin A x;(~1+4 cos® A x;) =

sin Az, (2 - oz 22 5 },:392_‘.2,2)
27 l-a €3 l-cos p ¢

1i

Then, according to (52) the curvature at x = x1 1is:
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Memor 31
I m A2 2 _&
3 =la sin A x, | & — (1 - cos p t) +
dx ~ 31 = a
X=X1 -
18 ¢,
+ é-—:'"g (1 - cos Pst)] l (58)
The upper limits of (58) are:
2 € 18 €
%2—2- S| 2a ¥ sin M x, (5 I -1a + 5z 3a> (59a)
X X=X . ——— - -
when ¢€; and €3 show the same sign, and
2
2
éﬁg < % X Tiigh sin N x,; (59D)
ox X=X - a

when otherwiss.

The requirement that the curvature at x = x; for
equal signs €; and €3 shall at the most be the same
as the maximum value of (56a) results in

- 2 ¢ 18 €3 2 €
2a X sin A x <~ CI ) Siga N —i—
& 8 t\31 - a 9 - a & 1 - a
This condition is always met:
' 2 € + 18 €53 « I €,
3 1 ~-a 9 ~-al |1-2al

1,6., for

(60)

because

3
9

For different signs of €; and €3 the result is
similar, according to (56b) and (59b):

€ 9 ¢
- N ok in A x "i ‘2 N ( - 3)
3 l -2 8 1 a l - a 9 -~ &

This condition is met for every value of €3 as can
readily be seen,

T
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Figure 3.-Ratioc ¢ of maximum moments under dynamic and

static load versus ratio b of shock period
to period of free oscillations for various ratios a of
longitudinal force to Fulerian load.
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Figure 4.-"Shock period" b for divers "shock loads" e,
for which the maxiimum dynamic and static
stress are equal, i.e. ¢ =1 .,
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